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I
V;/;ethod is presented for analyzing Pilot-induced oscillations

{PI0) for the NT-33 closed-loop pilot model when retardations and
coefficients are not constant. The variation of retardations and
coefficients results from the effect of wind shear and the neuro-

muscular dynamics of the pilot reported in available data. Non-
linearities in the model are also considered. The method is based

on the use of a new description of such systems in terms of convolution

equations.

Spectral factorization is applied to the entire functions

of exponential order.

The result is a criterion for the PI0-system

with variable coefficients and variable delays.

continuity and boundedness of the coefficients and delays.

The criterion assumes

A Lyapunov

function:};jg/sonstructed which gives a criterion on the roots of a
certain "quasi-polynomial,” i.e., a polynomial in a variable and the

exponential of that variable. The largest domain of attraction is
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1. INTRODUCTION
The Air Force Flight Dynamics Laboratory (AFWAL/FI) has been con-

ducting research on the effects of control system dynamics on longitudinal

_ f flying qualities during fighter approach and landing. A sharp degradation

4 in flying qualities takes place during this critical phase 'of the landing

task. Severe pilot-induced oscillations during the flare havg been

reported. The objective in the program has been to invgstigate pilot-

induced oscillations (PIO) of the NT-33 aircraft due to significant

! control system lags, to effects of wind shear and to pilot delays.

! Advance digital control schemes add much greater flexibility and logic
capabilities when compared to analog systems. However, this increase in

! | complexity of future aircraft flight control systems may also add larger

: control system lags. It has been observgd that large control system

i lags, high pilot gains, pilot-lag due to neuromuscular dynamics and .

! aerodynamic transport lag are all possible causes of pilot-induced

oscillation probiems. These phenomena all rgquire careful theoretical

: analysis.
It should be stressed that the use of digital control system is

! now a veality and its effects on flying qualities of these fighter
' aircrafts need careful analysis. Thg variable stability NT-33 is
capable of producing a wide range of aircraft and control system
characteristics. The main reason for selecting the NT-33 aircraft was
to test the flying qualities of simulated YF-12 and YF-17 aircraft. The
simulation of the YF-17 with the NT-33 aircraft has encountered serious

g P10 difficulties in flare whereas no such problems have been reported for
! YF-17 {1]. Some detailed studies of P10 during the NT-33 aircraft
-f ! sfmulation can be found in earlier works of USAF/Calspan [2). Calspan

diagnosed the PIO-problem as excessive control lags. They modified the

; - . . ]
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simulated control system dynamics to reduce the lag contribution to
longitudinal dynamics and found that it reduced the problem. The effects
of significant control dynamics on fighter approach and 1anding longitudinal
flying qualities were also investigated in flight using the USAF/Calspan
NT-33 aircraft [3]. Pilot-induced oscillations occurred during the
landing task. The flight tests reported in [3]) provide a data base for
the development of suitable flying qualities requirements which are
applicable to aircraft with significant control system dynamics.

The properties of solutions of linear differential equations of
the retarded type with constant coefficients and constant time-delays
for the pilot model has been considered by several authors. However, the
formulation has not becn considered when the coefficients and retardations
in the closed-loop pilot model are variable. Such formulation may now
be justified when the effect of wind shear and the neuromuscular system
dynamics are included. This extension of the analysis is suggested by
the »=cent measurements that have been cited. A generalized closed-
Toop nonlinear pilot model for NT-33 aircraft, with variable retardations
and coefficients is considered herein. The theoretical analysis is
developed in the time domain to analyze the pilot-induced oscillations
problem in the most general format. ;
I1I. O0BJECTIVES

The structure of the research is as follows. First, a formulation
of the closed-loop NT-33 pilot model is introduced. The NT-33 air-frame

dynamic equations, linearized about the trim conditions and representing '

the manual flare and landing of the aircraft, have been used. The pilot

dynamics are assumed to have variable gain and variable retardation,

possibly due to wind shear and the neuromuscular effects. It is . i

assumed that the pilot forms the closed-loop, thus changing the overall

characteristics of the system. N




EAfter having introduced the required formulation of the closed-
looé NT-33A pilot model, certain theorems dealing with the spectral
factorization of entire functions of the exponential order were
use& to generate Lyapunov functionals. The reference source for this

material is the English transilation of the book by Levine lbj. which

gives a comprehensive treatment of the properties of the zeros of the
entire functions and related topics. The spectral factorization
theorems play a central role in constructing the Lyapunov functionals.
Spectral factorization is emphasized for the role that these equations
play in generating Lyapunov functionals for a class of system that
represents Pl10-systems, rather than on the mathematical proofs.
Convolution equations involving distributions which satisfy assumptions
made by Hale and Meyer [5] for the functional equations of the delay
type are used to describe the dynamical systems in analyzing the PIO
system.

I11. THE PILOT MODEL

Figure 1 represents a nonlinear pilot model. The NT-33 airframe

dynamic equations linearized about the trim condition representing the é
manual flare and landing of the aircraft have been used. These equations
are th same as those given in USAF/CALSPAN [2] and Smith [3], except ‘
that only the longitudinal transfer functions have been derived. The d

Tongitudinal equations representing the open-loop aircraft dynamics about
the trim conditions during the flare and landing maneuvers are represented as
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where symbols represert as follows: u, w, q, 8 are perturbation velocity from
trim along x-body axis, perturbation velocity from trim along z-body axis, body
axis pitch rate and pitch attitude respectively. GES is pitch stick deflection
at grip. Also, notationally,

13X 13X 1 3 X
x:-—-—-, 2 = X 2 - A
u Mmoo )\v mow °’ GES macss
<132 1az . 1 32
zu m3u ’ zw- miw °* ZGES m 9 GES
1 a M 1 a M 1 a M
M = —— = LAY M s = 2
u Tyau "\v Ty w '’ GES macES

xu. )&. Zu’ Zu are body axis dimensional x-force derivative and z-force deriva-

tives respectively, Mu' Ix’ Iy are aircraft mass, moment of inertia about body

x-axis and body y-axis respectively, Ugs Woe Qs and Oo are trim values.

o’ o
These equations imply that the reference axis are body axis and the wings
are always level. For small angles, u, = VT' the trim true airspeed, and

ay = HO/VT' The variables u, w {a), ® and 8gg are al] incremental values from

the reference trim conditions.

u(t) 8
PILOT ES NT-33 0 o
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The transfer function for longitudinal stick input (GES) and pitch attitude
control output (6) can be derived from the equations of motion (1) as

1 1
MGES (s + ?é])(s + ?52)

B NS M T

s _ .

[ 2
ES (52 + 2; w s+ Wsp) (SZ + 2;

S 2
Sp Sp

where 91,2 represents airframe lead time constants csp’ wsp’ and Cph’ "ph are

w 2
ph ph S + "ph)
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short period damping ratio, short period undamped natural frequency and phugoid
damping ratio, phugoid undamped natural frequency respectively. p(s) ando(s)
are polynomials in s. The polynomials p(s) and o(s) are such that the degree of

- a(s) is assumed to exceed to that of p(s). An inspection of the data base of

L T Nt W i L Y e s ke g e A1 o

ref. [3, 10-12] suggests that a reasonable model for pilot dynamics in pitch

tracking would be of the form

o
w5

Ws) = £ 2, (t) s,‘e -st(t) , g by (1) s’ sn>m (3)
i=o i=0

where a, (t), and by (t) are bounded coefficients and 1(t) is a bounded time-

delay, the time-delay t(t) is unknown and can be assumed due to neuromuscular

effect of the pilot. A small transmission lag may also be present. The pilot
dynamics is assumed to have variable gains a; (t), b, (t) possibly due to wind

shear and the neuromuscular effects. It is assumed that the pilot forms the
closed-loop, thus changing the overall characteristics of the system.
' A closed-loop analysis can be performed by considering the pilot to be

controlling to some desired attitude which minimizes the pitch attitude error e.

The non-l1inearities of the artificial feel system are included in the model, as ' .
. well as the nonlinearities in the stability augmentation systems.
; This conmpletes our formulation of the closed-1oop nonlinear model with
the pilot in the loop. The dynamics of the NT-33 ajrframe, the pilot and the E ,
_ ! nonlinearities of the artificial feel system as well as the nonlinearities of E
' the stadbility augumentation system have all been defined. In the next section, : | )

we give some notations, theoretical backgrounds and our method of analysis. B £ \

e J‘:.:v'-z.v??'.w;uu,.l,q" O S




IV APPLICATION OF INVARIANCE PRINCIPLE

The 'invariance principle' of J. P. LaSalle played an important role in
the theory of abstract dynamical systems. Very few practical applications
' (7,13] of 'invariance principle' have been attempted because of its complexity.
Nevertheless, it is also particularly useful in solving practical problems.
: By applying the invariance principle, we are able to derive stabiiity criteria
: for the dynamical systems which are optimal in a certain sense. Thus, the
? : stability results can be improved considerable when the study of the system is
| based on LaSalle's invariance principle [6].

In this section, we first introduce our notations. This is followwed by

some lemmas on spectral factorization and its application to the invariance
principle. Llevin [4] has already given comprehensive treatment of the proper-
ties of zeros of the entire functions. The spectral factorization of the entire
function plays an important roie in studying the properties of solutions as we
shall see in our analysis of the pilot-induced oscillation problem.

The following notation from Hale [8] will be used in this paper: " is
complex Euclidean n-space, and for x € E", |x| denotes any vector norm. For
a given 1(t) > T > 0, C denotes the linear space of continuous functions mapping
! the internal [ - T, 0] into E" and for ¢ € C, [Helly = sup | #(e)], - T <6 <0.
Of course C with this norm is a Banach space. For H > 0, CH denotes the set of R
¢ in C for which || ¢ || < H, for any continuous function x(s) whose domain is j
-T <s _<a, a >0, and whose range is in E", and for any t, 0. <t <a the
synbol x, will denote x, (8) = x (t +0), -7 <0 _<0; that is x, is in C,,
and is that segment of the function x(s) defined by letting s range in the

fnterval t - T <s <t.
Let G(t,¢) be a function defined on (0,=) x CI-I into E" and let x (t)
denote the right hand derivative of x(s) at s = t. The system
X(t) = 6(t, %), t 20 |
is called a functional - differential equation (FDE).
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Definition - Let to > 0, and let ¢ be any given function in C',l A function
x(to, ¢) (t) is said to be solution of FDE with initfal function ¢ at t = to
if there exists a number A > 0 such that

(a) for each t, ty <t <t )+ A, X¢ (to, ¢) is defined in Cy

(b) X, (tgs 0) = ¢

(c) x(to. ¢) (t) satisfied the functional differential equation
(FDE) for to._< t <t ¢+ A.

To analyze the PI0-problem the original model in fig. 1 is redrawn as

e = z*e](t) p*ez(t) = @
u(t) e e
. g B I gy I .
o P
f(t,")
Fig. 2

Note that in the block diagram
L * € (t)

m i n iy .
(D) s+ Tob(t) 6T ) v et) (4)

Notationally, we have
&+ e(t) = " (t)
and
figy *elt) = eM(t-1(t))
where * denotes the convolution operator and &" denotes the m-th derivative
of Dirac delta function. Throughout we are assuming that the distribution

functions are measureable and have compact support on [0,t].
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Next, we define the convolution equations.
e](t) =g * ez(t)
e (t) =2+ e](t) = Q *g * ez(t) (5)

The Laplace transform of the distribution e](t) can be represented by a

function
-st o -st

<ey, € >=J e,(t) e dt
] o}
It is assumed, however, that the distributions are of the finite order. In
other words the distributions throughout have compact support. For details of
such distribution functions, we refer to Schwartz [9]. Our objective here is
to provide some background material rather than vigorous derivations. Next,

we state a Theorem which establishes the properties of solutions e(t). This

result will be used later in analysis of the closed-Toop pilot model.

Theorem 1. The solutions of the equation

e(t) =2 *og * e, (t) =0
are exponentially stable provided the transcendental polynomial £(s)(s)
satisfy the following conditions:

(i) Re [& (s) o (s) lr(t) =0] <0

(1) 2(wo (wko
Proof of Theorem 1. It is sufficient to show that the real parts of the
roots of the transcendental polynomial

P(s;t(t)) = &(s) - o(s)

- (1 ag (t) s? &T(Es . r by (t)s’)
i=o0 i=0

-(s2 +2 Ssp "sp s + wgp) (s2 + 2 Cph Yoh s + wsh) =0 (6)

are all negative for t (t) > 0. It is obvious that Re o(s) <O provided
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* , 0 < ‘sp < "sp and 0 < ‘ph < '”ph' To show that the real part of the
: transcendental polynomial £(s;t(t)) to be negative, we expand in the form
- dsit(t) = 5"+ [ay (1) T (1) 15 ™)
t la,_, (t) e T(t)s b, o (t) 1s -2, .
| + fay (t) €T ES 4 b (1) ) (7)
we have assumed that m = n-1. If m is order less than n-1, we can set the
coefficients a _, etc. zero.
dsie(t) = "+ p 1 (8) "4 g (6) S"E e e p () (8)
where
! Py () =a i (t) e~T(t)s b,y (t) .

| Ppop (t) = a5 (t) e T(t)s 4y, 5 (t)

! p,. (t) a; (t) eT(t)s b, (t)

ese 3

Since, | exp [-1 (t)s] | < 1 for all 7(t) > 0, hence, when t(t) >0 and s > O,
! the coefficients pi(t). i=1,..., n are bounded. Llet p denote a constant such

that p = max | pi(t) | and let D = max [1, (n+1)p] > 0. We will now show that

P AP

1. <1 _< n under the assumptions of Theorem 1, all roots of &(s;t(t)) lie in the

left half plane. To prove this, we consider two cases: (i) when |s | > D and

cdwr avhy

(i1) when |s| < D. Now suppose |s| > D, then
| (six(e)) | = | s"+ gy (8 s™ e wp () | i

(t) (t)
3_|s|"[1-.|£’|‘_;_‘|.__l-,,.-lp_TSI_n.L]

21" 00 - ;E-—'Ty-' 1>0 (9)
n+l1)p

The last inequality follows from the fact that [s| > D= (n+ 1) p > 1. Thus,

in the domain |s| > D and Re (s) > O the pdolynomial £(s;1(t)) possesses no
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: roof for any bounded t(t) > 0. Now suppose that |s| < D. From condition
(1) éof Theorem 1 roots of £(s) o(s) are al1 in the semi-plane Re (s) < O for
t(t) = 0. Now when t(t) = 0, the only possibility for the characteristic roots
‘ to fall within Re (s) > 0 is that for 7(t) % O the variable s runs along the
imaginary axis on the s-plane from -D to D. But the condition (ii) does not ”
allow the roots to run along the imaginary axis of s-plane and therefore under -
. our assumptions the characteristic roots must remain within the semi-plane
Re (s) < 0. This completes the proof.
For the nonlinear model in fig. 2, the description of the system is

! obtained as 5

L %o *e, (t)+f(c, pre, (t)) =u(t); t >0 (10)

To analyze stability of the functional equation (10), we shall construct

a Lyapunov functional. The spectral factorization of the entire function plays

oy »DJ~."¢=‘)A‘T OV e

an important role in the construction of this Lyapunov functional as will be
3 seen later. We depend heavily upon the works of Levin [4] who has shown that
| ‘ spectral factorization may be applied to entire functions of exponential type. é
= We state these results for our convenience. :
Lemma 1. In order that an entire function F(s) of exponential type may be of
class A it is necessary and sufficient that for some fixed A > 0 and for every
; R > X the following inequality be valid: '

» R 1n F (w) F (-w)]

i
i
A , wz

< Mgy

where M is a constant.
foh

! Lenmma 2. For an entire function F(s) of exponential type to have the

representation
? F(w) = 8 (w) B (-w)
where § (w) is an entire function of type {- (] t(t) |..< T) with zeros in
the half-plane Re(s) > 0, 1f, and only if F(s) belongs to class A and F(w) > O.
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? : We will now introduce our main results to establish asymptotic stability

of the nonlinear system (10). Stability of the largest invariant set is then

derived from the application of the 'invariance principle’.

5. MAIN RESULT

Consider a Lyapunov functional

V(')=que2

ey (£)) (o * e, (1))

= L] * e * e

5 t{o) 2 P~ %

: S (eve, ()2 )t (1)

where we have assumed that 2(s) o(s) and p(s) have no common zero. Llet

the assumptions of lemmas 1 and 2 hold, then P
F(s) d:f'l(S) o(s) p(-s) + 2(~s) a(-s) p(s) (12)

has spectral factorization such that ;
F(s) = o(s) (-s). (13)

Let ¢(s) be the transform of a distribution of order < n and support in

[0,T]. If the assumption of Theorem 1 holds, then F(s)| > 0. We now

s=jw
show that V(-) is positive. The state e, (t) = ez(to,wo)(t) is such that
at time ty = t(0), (ez(t))t = 0. And similarly at t, = t(ez). (ez)t = e,.
Therefore t{0) = «, and t(ez) = 0. Hence the functional (11) can be

written as

W) = (D ae, () .l

- S (o ey () (o () T}

K - ere ¥ e (10)
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For examining the invariance properties of the nonlinear system (15)
with u(t) = 0,
z*o*ez(t)+f(t.p*e2(t))=0 (15)

we compare its solution with the linear system

z*a*Ez (t) = 0. (16)

Next, we show that V(<) > O along the solution of eqn. (16).
Obviously

V) = 7 (erey ()P dt>0 (7)
o

provided ¢ * e, (t) % 0. Me of course assume that ¢ * e, (t) is
defined. Now, computing ot Vt ('e'z) along the trajectories of eqn. (16)

;,} yields:

¢ 'V, (5,) = limswp § [V, (8,) -V, (5,) ]
t €2 pr R b e 1620 7 Y 162
I = msw R (08 ()P et
£ h=+o t+h

£

" 6+ T, ()2

: - 1 (erE, (1) et )

) t

= -lo*%, (). (18)

Thus the solution of eqn. (16) is decaying and any two solutions

EZt (tys %) (t), EZt (ty ng) of (16) satisfy the estimate,

[ &y (ts ¥5) = & (g ng) o< AlETI]Y, ,nonoe-u(t-to) (19) .

where notationally ||v||, = mx_ .. <o [1w(s)||. Now consider i

functional (17) and compute along the trajectories of (15)
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DVylep)(1s) = 1M gup g Wy (ep) - Vyley)]

1 —

+ Ve (€(t) - Vv, (ey(t))] 3 | ‘E

ia

Tim 50 1 Veap(e()) = VG011 + 0¥y(E) 35

{A

-[o* ez(t)]z + C llf(t.p * ez(t)'l

- To * ey () + colt,|le, (1)]1,)

[

A

< H(tbez(tolwo)(t)) (20)

———

We have assumed that the nonlinear system admits unique solution and the

nonlinearity is such the ||f(t,p * ez(t))lI-_<_g(t.||e2t(t)||°) where

g{t,u) is nondecreasing in u for teR* and W is some non negative function.

It is of course, possible to obtain the function W () if the distributions
involved are restricted further. However, a few examples wil)l be presented

to 11lustrate the application of the method and indicate the type of functionals

that are obtained. To examine the invariance properties of the nonlinear

system, we first note that the solution e, (to. wo)(t) is bounded for all
t> to because of the existence of a Lypunov functional. If the 1imit point

2 of &, (to. "’o) (t) does not exist on the boundary G, G is an open set in C,
then by lemma 4.8 in [6], e, (to. "o)(t) is pre-compact. Now define the

largest invariant set QCE = (ez(to.wo)(t) : u(t.ez(towo)(t) =0} !

then '
-1

et ¥,)(t) + EAV(C)

for some C and al1t > o.
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For our assertion, we are making use of the Theorem 4.7, P.78 in

i [6). Thus, these results are combined into the following theorem.

Theorem 2. If there exists ¢(s) whose distribution is of order <n and

compact swpport in [0,T] such that F(s) defined in eqn. 12 has the
spectral factorization such that

i) F(s) = &(s) &(-s);

11) Conditions of Theorem 1, and lemmas 1 and 2 hold;

i11) [|f(t, 0 * ey(t)) [l< o(t, |le,,(t)]],

' where g(t,u) is non decreasing in u for teR’ °
Then there exists a Lyapunov functional Vt(-) on G, for system (10) with

u(t) = 0. Furthermore if

~ det,
, iv) RCE = {ey(t), wp)(t) : W(t.ep(ty, w)(t) = 0}

where W is some non-negative function then
; &(t,s ¥)(t) + EAV(c)

for some c and t > o.
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